
4921220034E

- Wide range of standard measuring/output ranges
- Compact design, 55 x 75 mm
- Easily accessible terminals
- Easy identification of unit/function
- Accuracy class 0.5
- 35 mm DIN rail or base mounting

Application

The current transducers type TAC-311DG or TAC-321DG are transducers for measurement of a sinusoidal AC current converted into a DC current signal proportional to the measured value on a single phase or 3 phase network.

PLCs, PCs, microprocessor control, indicators, alarm units etc. can be operated by the output signal.

Measuring principle

Average measurement.

The transducer consists of a transformer, which gives galvanic insulation between input and output.

The signal is rectified, smoothed and amplified into an A DC output.

The TAC-311DG with zero adjustment needs a constant aux. supply voltage, which also is insulated from output by a transformer.

Type TAC-311DG/TAC-321DG

Available transducers

Order no.	Output	

TAC-311DG, aux. supply 24V DC					
Input, std.	Input, span	0-5mA DC	0-20mA DC	4-20mA DC	
0-1.0A AC	0-0.85/1.2A			1207000005	
0-1.3A AC	0-1.10/1.6A			1207000015	
0-5.0A AC	0-4.25/6.2A	1207000011		1207000006	
0-6.0A AC	0-5.00/7.5A		1207000023		
0-6.5A AC	0-5.50/8.1A			1207000020	

TAC-311DG, aux. supply 48-110V DC						
Input, std.	Input, span	0-5mA DC	0-10mA DC	0-20mA DC	4-20mA DC	0-10V DC
0-1.00A AC	0-0.85/1.2A				1207000013	
0-1.00A AC	0-1.00/1.1A					1207000029
0-1.20A AC	0-1.00/1.5A		1207000028			
0-1.30A AC	0-1.10/1.6A				1207000016	
0-5.00A AC	0-4.25/6.2A	1207000012	1207000025		1207000018	
0-6.25A AC	0-5.30/7.8A		1207000026			
0-6.50A AC	0-5.50/8.1A			1207000024	1207000021	
0-7.25A AC	0-6.10/9.0A		1207000027			

TAC-311DG, aux. supply 88-220V DC					
Input, std.	Input, span	4-20mA DC			
0-1.0A AC	0-0.85/1.2A	1207000014			
0-1.3A AC	0-1.10/1.6A	1207000017			
0-5.0A AC	0-4.25/6.2A	1207000019			
0-6.5A AC	0-5.50/8.1A	1207000022			

TAC-311DG, aux. supply 110/230V AC				
Input, std.	Input, span	0-5mA DC	4-20mA DC	
0-1.0A AC	0-0.85/1.2A	1207000009	1207000001	
0-5.0A AC	0-4.25/6.2A	1207000010	1207000002	

TAC-311DG, aux. supply 440V AC					
Input, std.	Input, span	4-20mA DC			
0-1.0A AC	0-0.85/1.2A	1207000003			
0-5.0A AC	0-4.25/6.2A	1207000004			

TAC-321DG, without aux. supply					
Input, std.	Input, span	0-10mA DC	0-20mA DC		
0-1.0A AC	0-0.91/1.2A		1207000103		
0-5.0A AC	0-4.60/6.2A	1207000102	1207000101		

Type TAC-311DG/TAC-321DG

Technical specifications

Measuring current (I_{nom}):

TAC-311DG: 1.0...7.25A AC (≤1.2VA)

TAC-321DG: 0...1A AC (≤ 2.0VA)

0...5A AC (≤ 2.3VA)

Overload: $2 \times I_{nom}$ continuously $10 \times I_{nom}$ for 10s

40 x I_{nom} for 1s

Frequency range: 45...65Hz

Range:

Output TAC-311DG

(20...100%): 4...20mA DC

Span adjustment ±20% of FS Zero adjustment ±20% of 4mA Output limit < 22.0mA DC

Output TAC-311DG

(0...100%):

0...5mA, 0...10mA, 0...20mA DC

0...10V DC

Span adjustment ±20% of FS

output

Zero adjustment for all span

adjustments

Output TAC-321DG

(0...100%):

0...10mA, 0...20mA DC Span adjustment +10/-20% of

FS output

Output load current: Max. 12V

Output load voltage: Max. 1mA

Accuracy: Class 0.5 (-10...<u>15...30</u>...55 ℃)

according to IEC 688

For output 0...10V DC: Class 0.5 (-10...<u>15...30</u>...55 °C)

at load $\geq 100 \text{k}\Omega$

Class 1.0 (-10...<u>15...30</u>...55 ℃)

at load $\ge 10k\Omega$

Response time/ripple: < 300ms/0.5%pp

Temp. coefficient: Max. 0.1% of full scale per 10 ℃

TAC-311DG

 Δ out/ Δ U_{aux}/ Δ F_{aux}/ Δ R_{load}: Max.

 $0.1\%/\Delta 10\% U_{aux}/0.1\% (45...65 Hz)$

/0.1% R_{load} max.

TAC-321DG

 Δ **out**/ Δ **R**_{load}: 0.5% R_{load} max.

Ambient temperature: -10...+55 ℃ (normal)

-25...+70 °C (operating) -40...+70 °C (storage)

Galvanic separation: Between inputs, outputs and

aux. voltage: 2200V - 50Hz - 1min.

Aux. supply voltage (U_n)

only TAC-311DG: 110/230/440V AC ±20% (max. 2.5VA)

24, 48...110, 88...220V DC -25/+30%

(max. 2W)

Connections: Max. 4.0mm² (single-stranded)

Max. 2.5mm² (multi-stranded)

Materials: All plastic parts are self-extinguishing to

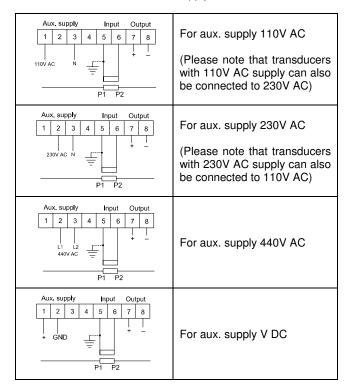
UL94 (V1)

Protection: Case: IP40. Terminals: IP20,

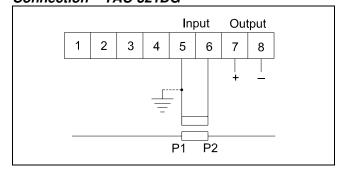
to IEC 529 and EN60529

EMC: EN50081-1/2, EN50082-1/2

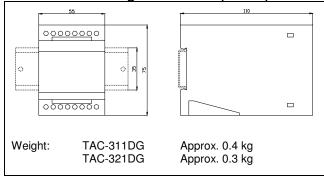
Note: Transducers with V AC supply cannot be


connected to supply sources where the frequency in some cases is lower than 35Hz

for more than 1min.


Type TAC-311DG/TAC-321DG

Connections - TAC-311DG


Recommended fuse 2A on aux. supply.

Connection - TAC-321DG

Mechanical drawing/dimensions (in mm)

Order specifications

To order a transducer with a standard input, only quote the type and order no.:

Type - Order no.

Example:

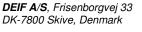
TAC-311DG - 1207000018 (see the tables on page 2)

To order a TAC-311DG transducer with a customised input: Type – Measuring current – Output – Supply Example:

TAC-311DG - 0...4.5A - 4...20mA - 48...110V DC

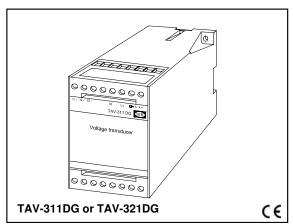
To order a TAC-321DG transducer with a customised input: Type – Measuring current – Output

Example:


TAC-321DG - 0...6A - 0...10mA

Please note that some combinations of input, output and aux. supply are not available as standard.

Due to our continuous development we reserve the right to supply equipment which may vary from the described.



AC voltage single function transducer

4921220032E

- Wide range of standard measuring/output ranges
- Compact design, 55 x 75 mm
- Easily accessible terminals
- Easy identification of unit/function
- Accuracy class 0.5
- 35 mm DIN rail or base mounting

Application

The voltage transducers type TAV-311DG or TAV-321DG are transducers for measurement of a sinusoidal AC voltage converted into a DC current or DC voltage signal proportional to the measured value on a single phase or 3 phase network.

PLCs, PCs, microprocessor control, indicators, alarms units etc. can be operated by the output signal.

Measuring principle

Average measurement.

The transducer consists of a transformer, which gives galvanic insulation between input and output.

The signal is rectified, smoothed and amplified into a V DC or an A DC output.

The TAV-311DG with zero adjustment needs a constant auxiliary supply voltage, which also is insulated from output by a transformer.

Type TAV-311DG/TAV-321DG

Available transducers

Order no.	Output	
Craci no.	Catpat	

TAV-311DG, aux. supply 24V DC					
Input, std.	Input, span	0-5mA DC	0-20mA DC	4-20mA DC	
0-120V AC	0-105/145V	1207010013			
0-120V AC	0-100/150V			1207010004	
0-132V AC	0-110/165V		1207010023	1207010019	
0-230V AC	0-192/285V			1207010005	
0-440V AC	0-370/550V			1207010006	
88-132V AC	88-125/185V	1207010016			
88-132V AC	88-125/143V			1207010007	

TAV-311DG, aux. supply 48-110V DC						
Input, std.	Input, span	0-5mA DC	0-10mA DC	0-20mA DC	4-20mA DC	0-10V DC
0-120V AC	0-105/145V	1207010014				
0-120V AC	0-110/133V					1207010027
0-132V AC	0-100/165V		1207010026			
0-132V AC	0-110/165V			1207010024	1207010020	
0-500V AC	0-420/580V				1207010022	
88-132V AC	88-125/185V	1207010017				

TAV-311DG, aux. supply 110/230V AC					
Input, std.	Input, span	0-5mA DC	4-20mA DC		
0-100V AC	0-85/125V		1207010018		
0-120V AC	0-105/145V	1207010012			
0-120V AC	0-100/150V		1207010001		
0-230V AC	0-192/285V		1207010002		
0-300V AC	0-250/375V		1207010025		
0-440V AC	0-370/550V		1207010003		
0-500V AC	0-420/580V		1207010028		
88-132V AC	88-125/185V	1207010015			
88-132V AC	88-125/143V		1207010008		

TAV-311DG, aux. supply 88-220V DC				
Input, std.	Input, span	4-20mA DC		
0-132V AC	0-110/165V	1207010021		

TAV-311DG, aux. supply 440V AC			
Input, std.	Input, span	4-20mA DC	
0-440V AC	0-370/550V	1207010009	

TAV-321DG, without aux. supply					
Input, std.	Input, span	0-10mA DC	0-20mA DC	0-10V DC	
0-100V AC	0-91/125V		1207010102		
0-120V AC	0-110/150V	1207010101	1207010103	1207010106	
0-230V AC	0-210/287V		1207010104	1207010107	
0-440V AC	0-400/550V		1207010105	1207010108	

Type TAV-311DG/TAV-321DG

Technical specifications

Meas. voltage (U_{nom}):

TAV-311DG: 100...500V AC (≤ 0.3VA)

TAV-321DG: 100...440V AC (≤ 2.8VA)

Overload: 1.2 x U_{nom} continuously,

2 x U_{nom} for 10s

Frequency range: 45...65Hz

Range:

Input TAV-321DG: 0...30...120%

0...30% U_n output not linear

Output TAV-311DG

(20...100%):

4...20mA DC

Span adjustment ±20% of FS Zero adjustment ±20% of 4mA Output limit < 22.0mA DC

Output TAV-311DG

(0...100%):

0...5mA, 0...10mA, 0...20mA DC

0...10V DC

Span adjustment ±20% of FS

output

Zero adjustment for all span

adjustments

Output TAV-321DG

(0...100%):

0...10mA, 0...20mA DC

0...10V DC

Span adjustment +10/-20% of

FS output

Output load current: Max. 12V TAV-311DG

Max. 8V TAV-321DG

Output load voltage: Max. 1mA

Accuracy: Class 0.5 (-10...<u>15...30...</u>55 °C)

according to IEC 688 Class 1.0 at $U_n \le 25\%$

For output 0...10V DC: Class 0.5 (-10...<u>15...30</u>...55 ℃)

at load $\geq 100 \text{k}\Omega$

Class 1.0 (-10... $\frac{15...30}{0...55}$ °C) at 10kΩ ≤ load < 100kΩ

Response time/ripple: < 300ms/0.5%pp

Temp. coefficient: Max. 0.1% of full scale per

10°C

TAV-311DG

 $\Delta out/\Delta U_{aux}/\Delta F_{aux}/\Delta R_{load}$: Max.

 $0.1\%/\Delta 10\% U_{aux}/0.1\% (45...65 Hz)$

/0.1% R_{load} max.

TAV-321DG

 Δ **out**/ Δ **R**_{load}: 0.5% R_{load} max.

Ambient temperature: -10...+55 ℃ (nominal)

-25...+70 °C (operating) -40...+70 °C (storage)

Galvanic separation: Between inputs, outputs and

aux. voltage: 2200V - 50Hz -

1min.

Aux. supply voltage (U_n)

only TAV-311DG: 110/230-440V AC ±20% (max. 2.5VA)

24, 48...110, 88...220V DC -25/+30% (max.

2W)

Connections: Max. 4.0mm² (single-stranded)

Max. 2.5mm² (multi-stranded)

Materials: All plastic parts are self-extinguishing to

UL94 (V1)

Protection: Case: IP40. Terminals: IP20,

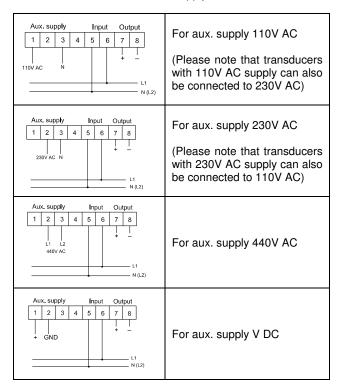
to IEC 529 and EN60529

EMC: EN50081-1/2, EN50082-1/2

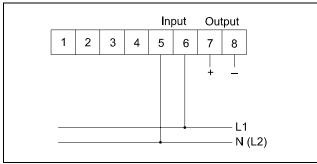
Note: Transducers with V AC supply cannot be

connected to supply sources where the frequency in some cases is lower than 35Hz

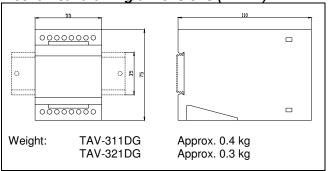
for more than 1min.


If the measuring frequency in some cases is

lower than 35Hz, the transducer cannot be


applied.

Connections - TAV-311DG


Recommended fuse 2A on aux. supply.

Connection - TAV-321DG

Mechanical drawing/dimensions (in mm)

Order specifications

To order a transducer with a standard input, only quote the type and order no.:

Type - Order no.

Example:

TAV-311DG - 1207010022 (see the tables on page 2)

To order a TAV-311DG transducer with a customised input: Type – Measuring voltage – Output – Supply

Example:

TAV-311DG - 0...450V - 4...20mA - 48...110V DC

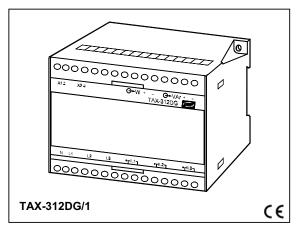
To order a TAV-321DG transducer with a customised input: Type – Measuring voltage – Output

Example:

TAV-321DG - 0...220V - 0...10V

Please note that some combinations of input, output and aux. supply are not available as standard.

Due to our continuous development we reserve the right to supply equipment which may vary from the described.


DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

Dual Output Power Transducer

Type TAX-312DG/1 4921240181F

- · Combined watt and var measurement
- Accuracy class 0.5/1.0
- Voltage up to 690V
- Galvanic separation 4000V
- 35 mm DIN rail or base mounting

Application

The dual output transducer type TAX-312DG/1 is a power transducer for measurement of active power and reactive power, on a single phase or 3-phase network, providing a separate output for both measurements.

The 2 outputs can be configured for all standard output ranges.

Measuring Principle

The transducer measures current(s) and phase voltage(s). The TDM (Time-Division-Multiplication) principle ensures an accurate measurement of the RMS value of both the active power and the reactive power (U x I x cos- ϕ) and (U x I x sin- ϕ), irrespective of wave form. The TAX-312DG/1 is available with the following couplings:

1W/1VAr single phase ¹
1W3/1VAr3 1 element 3 phase 3 wire, balanced load ¹
1W4/1VAr4 1 element 3 phase 4 wire, balanced load ¹
2W3/2VAr3 2 element 3 phase 3 wire, unbal. load ²
3W3/3VAr3 3 element 3 phase 3 wire, unbal. load ³
3W4/3VAr4 3 element 3 phase 4 wire, unbal. load ³

- 1) 1 external current transformer
- 2) 2 external current transformers
- 3) 3 external current transformers

In order to measure the reactive power of coupling 1VAr and 1VAr4, the voltage input of the transducer is provided with a built-in 90° phase shifter network. To ensure correct measurements in this coupling, the net frequency must be stable and correspond with the information on the transducer type label (50Hz / 60Hz).

Calculation of Measuring Range

3-phase network

Lowest measuring range: 0.5 x $\sqrt{3}$ x U x I Highest measuring range: 2 x $\sqrt{3}$ x U x I For single phase networks the factor $\sqrt{3}$ is omitted.

Note: The calibration range of the VAr measurement is equal to 50% of the calibration range of the Watt measurement.

Technical specifications

Meas. current (I_n) : 0.5...5A AC

overload: $4 \times I_n$, continuously,

20 x I_n for 10 s (max. 75A) 80 x I_n for 1 s (max. 300A)

load: Max. 0.5VA per phase.

Meas. voltage (U_n): (see supply voltage - AC ranges).

overload: $1.2 \times U_n$, continuously,

 $2 \times U_n$ for 10 s

load: $2k\Omega/V$.

Frequency range: 40...45...65...70Hz.

Outputs: 2 analog outputs, referring to mutual

ground.

Range:

Output (0...100%): 0..1mA, 0...5mA, 0..10mA, 0..20mA,

0..1V, 0..10V

Output (20...100)%: 0,2..1mA, 1..5mA, 2..10mA, 4..20mA,

0,2V..1V, 2..10V

Output(-100..0..100%): -1..0..1mA, -5..0..5mA, -10..0..10mA,

-20..0..20mA, -1..0..1V, -10..0..10V

Output load current: Max. 10V
Output load voltage: Max. 20mA

Accuracy:

Watt: Class 0.5 (-10..<u>15...30</u>...55°C)

according to IEC 688.

Var: Class 1.0 (-10..<u>15...30</u>...55°C)

according to IEC 688.

Response time/

ripple: 150ms/1%pp

Temperature

coefficient: max. +/-0.2% of full scale per 10°C.

Ambient

temperature: -10..+55 °C (nominal)

-25..+70 °C (operating) 40..+70 °C (storage)

Galvanic separation: Between inputs, outputs and aux.

voltage: 4000V - 50Hz - 1 min.

Supply voltage (U_n): 57.7-63.5-100-110-127-200-220-230-

240-380-400-415-440-450-660-690VAC ±20% (max. 3.5VA)

24-48-110-220V DC -25/+30%

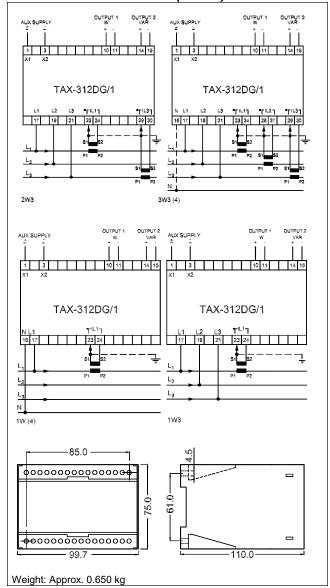
(max. 2W).

Climate: HSE, to DIN 40040.

Connections: Max. 4 mm² (single-stranded).

Max. 2.5 mm² (multi-stranded).

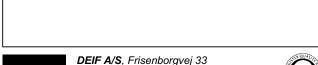
Materials: All plastic parts are self-extinguishing


to UL94 (V1).

Protection: Case: IP40. Terminals: IP20,

to IEC 529 and EN 60529.

The transducer is equipped with a green LED marked "POWER" for indication of power ON.


Connections/dimensions (in mm)

Order specifications

Type – Coupling – Measuring range (W) – Ct – Measuring voltage – Vt – Nom. frequency (only for coupling 1W/1VAr and 1W4/1VAr4) – Output 1 – Output 2 – Supply

Due to our continous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

Tel.: +45 9614 9614, Fax: +45 9614 9615 E-mail: deif@deif.com, URL: www.deif.com

Insulation amplifiers DC/DC amplifiers

Type TDG-210DG

4921220011E

- Conversion of measuring signal possible (E.g. –10...0...10mA into 4...20mA)
- Suppression of negative input signals possible
- Aux. voltage: 57.7...440V AC or 24...220V DC
- For mounting on DIN rail

CE

Application

TDG-210DG is a CE marked DC/DC amplifier with galvanic separation between input and output. It is typically used for:

Converting one type of DC signal into another DC signal

(E.g. from -10...0...10mA into 4...20mA)

Converting potentiometer input into a DC signal

(E.g. from $0...1k\Omega$ into 0...10V)

Separating a number of earthing points

If a cable is connected to earth at more than one point, a measuring error may develop or noise problems may arise if the earth potentials of these vary.

Galvanic separation of current signals

As measuring equipment connected to the current output of a transducer is connected in series, simultaneous earthing of more than one input of connected measuring equipment will result in short-circuit of the input of intermediate measuring units.

Conversion of measuring signal

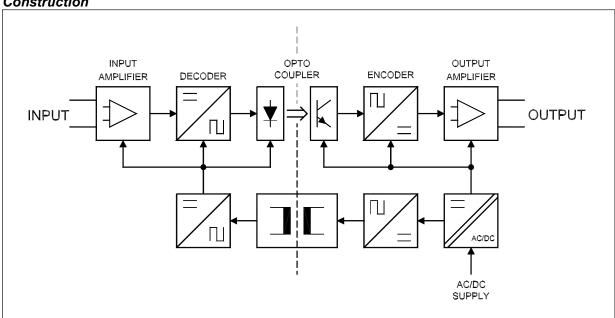
If increasing output is requested at decreasing input, this may be achieved by means of the insulation amplifier, at the same time providing galvanic separation between the 2 measuring circuits. (E.g. from 10...0V DC into 0...5mA).

Adaption of measuring range

The input may be suppressed, i.e. only a part of the range is used. (E.g. from 10...20mA to 0...10V DC).

Separation of measuring circuits

In case of remote transmission of a DC signal - typically a 4...20mA signal to a number of measuring points situated well away from each other - separation into galvanically separated measuring circuits is often requested to isolate a possible fault and confine this to the faulty circuit.


Measuring on DC shunts

The potential of a DC measuring shunt (0...60mV) is sometimes high when compared to earth. A leakage between the measuring cable and earth will result in a measuring error. The galvanic separation at the same time provides protection against accidental contact to the high potential.

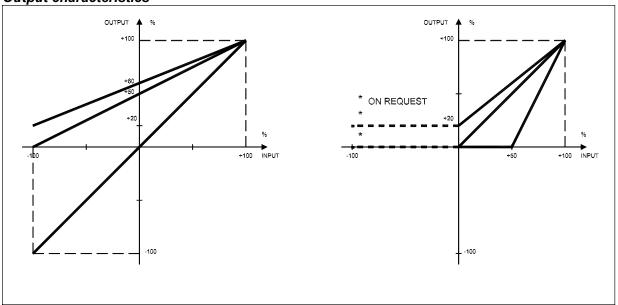
Measuring of DC voltages

Especially when measuring high DC voltages galvanic separation between input and output is an absolute necessity for safety purposes and due to differences in the potentials of input and output. TDG-210DG is available for measuring of voltages up to 500V DC.

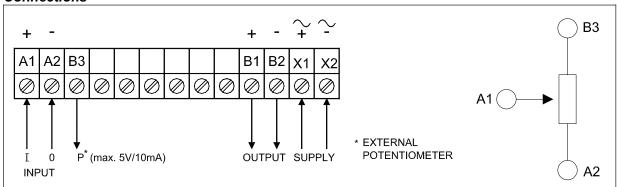
Construction

TDG-210DG requires auxiliary voltage and is fed through a transformer or a 24/48/110/220V DC inverter. The secondary voltage is rectified and fed to the encoder and output amplifier shown to the right of the galvanic interface. The input amplifier and the decoder are fed through a DC/DC inverter. The input signal is amplified and is, through optocouplers, transmitted to theoutput amplifier.

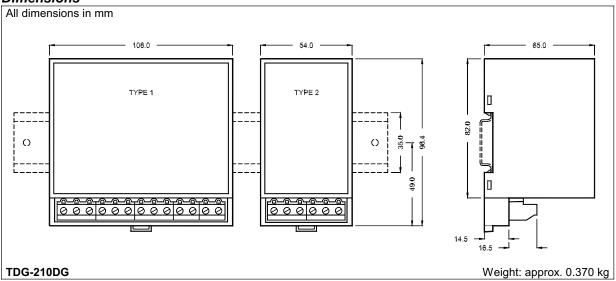
This measuring method combines high accuracy of measurement with long-term stability.


Standard input and output may be set by means of jumpers, whereas special input is factory calibrated.

Technical specifications


Technical spec	ifications		T	_	
Current input	Standard	01mA	0.21mA	00.51mA	-101mA
	Standard	05mA	15mA	02.55mA	-505mA
	Standard	010mA	210mA	0510mA	-10010mA
	Standard	020mA	420mA	01020mA	-20020mA
	Special - min.	00.1mA	0.020.1mA	00.050.1mA	-0.100.1mA
	Special - max.1	050mA	1050mA	02550mA	-50050mA
	Load	01V voltage dro	op for all current i	inputs	•
Voltage input	Standard	01V	0.21V	00.51V	-101V
	Standard	010V	210V	0510V	-10010V
	Special - min.	060mV	1260mV	03060mV	-60060mV
	Special - max. ¹	0400V	80400V	0200400V	-4000400V
	Load	00.1mA input o	current for all volta	age inputs (10kΩ/V)	
Potentiom. input		050Ω/10kΩ			
Current output	Standard	(See standard cu	ırrent inputs abov	ve)	
	Load	Max. 15V/±15V a	above output		
	Overload	Max. 200% outpu	ut current		
	Protection	Protected against open output (max. 25V)			
Voltage output	Standard	(See standard voltage inputs above)			
	Load	Max. 20mA/±20mA from output			
	Overload	Max. 150% output voltage			
	Protection	Protected against short-circuited output (max. 45mA)			
Output (General)	Ripple	Max. 0.5% P-P to	IEC 688		
	Response time	Max. <10ms to I	EC 688		
	Characteristic	(See back page ¹)		
Insulation	Test voltage	2500V AC - 50Hz	z - 1 min.: betwee	en input/output/aux. vol	tage
	Operating voltage	600V AC - 50Hz	- 850V DC: between	een input/output/aux. v	oltage
Auxiliary voltage	V AC ±20% 4565Hz	57.7-63.5-100-11 (3.5VA)	10-120-127-220-2	240-380-400-415-440V	AC
	V DC -20/+30%	24-48-110-220V	DC (2.5W) DC/D	C inverter built in	
Environments	Temperature	-1055°C (nominal) -2570°C (operating), -4070°C (storage)			
		Class HSE to DIN 40040			
			N 40040		
	Climate			SS4361503 (PL4), IEC	255-22-1 (class 3)
	Climate	To EN 50081-1/2			255-22-1 (class 3)
Accuracy	Climate EMC	To EN 50081-1/2 Front: IP53. Tern	2, EN 50082-1/2,	C 529	255-22-1 (class 3)
	Climate EMC Protection	To EN 50081-1/2 Front: IP53. Tern Class 0.5% (-10.	2, EN 50082-1/2, ninals: IP20 to IE	C 529 to IEC 688	255-22-1 (class 3)
	Climate EMC Protection Input/output	To EN 50081-1/2 Front: IP53. Term Class 0.5% (-10. Typ. 0.15% per 1	2, EN 50082-1/2, ninals: IP20 to IE <u>1530</u> 55°C) t	C 529 to IEC 688 per 10°C	255-22-1 (class 3)
Accuracy Drift	Climate EMC Protection Input/output Temperature Load/output	To EN 50081-1/2 Front: IP53. Term Class 0.5% (-10. Typ. 0.15% per 1 Max. 0.1% for max	2, EN 50082-1/2, ninals: IP20 to IE 153055°C) t 0°C, max. 0.2% p ax. variation of ou	C 529 to IEC 688 per 10°C	255-22-1 (class 3)
<u> </u>	Climate EMC Protection Input/output Temperature	To EN 50081-1/2 Front: IP53. Term Class 0.5% (-10. Typ. 0.15% per 1 Max. 0.1% for max Max. 0.1% per 10	2, EN 50082-1/2, ninals: IP20 to IE	C 529 to IEC 688 per 10°C	

¹⁾ Further ranges within the stated minimum and maximum ranges available on request.


Output characteristics

Connections

Dimensions

power in sontrol

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

®

to supply equipment which may vary from the described.

Due to our continous development we reserve the right

multi transducers

49212200261

- All 3-phase AC measurements, true RMS
- 3 programmable analog outputs (current can be indicated with signs as function of power direction)
- 1 programmable pulse output
- Display showing all measurements
- Optional serial output for all values
- 1-, 2- or 3-phase measurements

Application

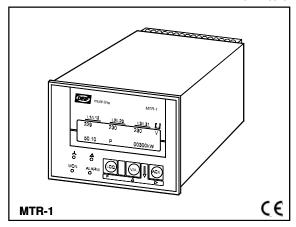
The MTR-1 multi transducer is a microprocessor-based measuring unit providing measurement of all electrical values on a single phase or 3-phase network, showing the measurements on the built-in display and transmitting these as:

- 3 analog outputs and
- 1 pulse output
 and
- a serial output (option).

The MTR-1 can replace several transducers in all electrical measuring applications, and can be applied both as a normal transducer, where the analog output is connected to a local control system, and as a remote value reading unit, where all measured values are transmitted to the remote control system via the serial interface.

The MTR-1 can measure true RMS values on all network topologies with/without neutral and with both balanced and unbalanced load.

MTR-1 contains all necessary measuring circuits and presents all values on an LC display. Messages are presented in clear text, all measuring values in engineering units.


The MTR-1 is a flexible and menu-programmed unit, enabling the user easily to adapt the unit to the application in question. Programming procedures are password protected.

Standard functions

The unit is designed for measurement on a 3-phase or 1-phase network.

Measured and calculated values

- phase to neutral voltage (3-phase U_{max}, U_{min} and average)
- phase to phase voltage (3-phase U_{max}, U_{min} and average)
- current (3-phase I and average) and direct. current.
- active power
- reactive power
- apparent power

- cos-φ
- frequency

Each of the 3 analog outputs can be programmed to represent any of the above measurements, and the output signal can be programmed to the required scaling and type.

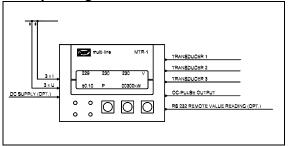
energy production (kWh) counter (not for billing purposes)

The open collector pulse output can be programmed to transmit any fixed number of pulses per produced kWh.

Options

Option A1: Remote value reading

- RS 232 remote value reading of all values measured by MTR-1.
- Siemens 3964, RK512 with standard telegram.


Option A2: Remote value reading

- RS 485 remote value reading of all values measured by MTR-1.
- Modbus standard telegram.

Other communication standards available on request.

Option B0: 12V DC power supply
Option B1: 24V DC power supply
Option B2: 48V DC power supply
Option B3: 110V DC power supply
Option B4: 220V DC power supply

Principle diagram

Type MTR-1

Technical specifications

Accuracy: Class 0.5, to IEC 688

(Modbus class 1.0)

Operating temp.: -20...70 ℃

(display, however: -20...60 °C)

Climate: Class HSE, to DIN 40040

Measuring voltage: 100/110 (1)..450V AC (4) ±20%.

Consumption: max. 0.15VA per phase

Measuring current: -/1A or -/5A

Consumption: max. 0.1VA per phase

Overcurrent: max. 20 x I_n for 1 s -/1 A: max. 100 x I_n for 1 s -/5 A: max. 20 x I_n for 1 s

Meas. frequency: 30...70Hz

Auxiliary supply:

- Standard: 85...231V AC ±20%, max. 6W - Optional: 12-24-48-110-220V DC +30/-25%, max. 6W

100/ 20/0,

Open collector

output: Max. 30mA "ON" current. Max. 27V "OFF" voltage.

Fuse: All voltage inputs should be protected

by a 2A fuse

Analog outputs: (0) 4...20mA or -20...0...20mA:

Max. load 400Ω .

Max. reading 32MW. See note 1.

Safety: To EN 61010-1. Installation Cat. III,

300V. Pollution degree 2.

Galvanic separation: Between open collector output and

remaining circuits.

Between analog outputs and remaining

circuits.

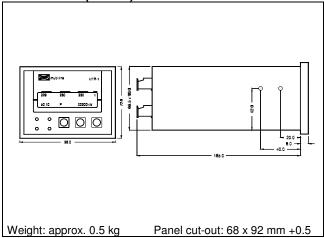
Between current inputs and remaining

circuits.

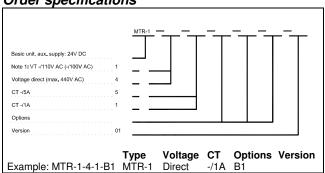
EMC: To EN 50081-1/2 and EN 50082-1/2.

Connections: Max. 2.5 mm² (supply, measuring

voltage and measuring current). Max. 1.5 mm² (analog outputs, open collector output and optional serial


interface).

Protection: IP21. Front: IP52.


To IEC 529 and EN 60529.

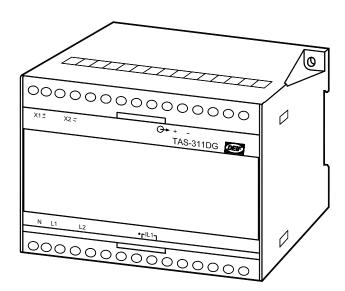
Housing: To DIN 43700.

Dimensions (in mm)

Order specifications

Note 1: If max. reading is more than 32MW, please add version 01 in order specifications, <u>and</u> if Vt is more than 65kV, please also add version 01 in order specifications.

Due to our continuous development we reserve the right to supply equipment which may vary from the described.

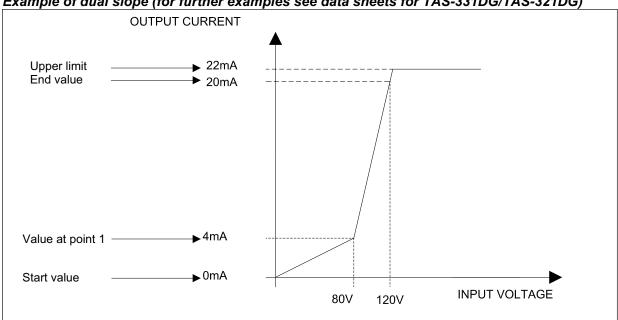

DK-7800 Skive, Denmark
Tel.: +45 9614 9614, Fax: +45 9614 9615
E-mail: deif@deif.com, URL: www.deif.com

Selectable AC-transducer

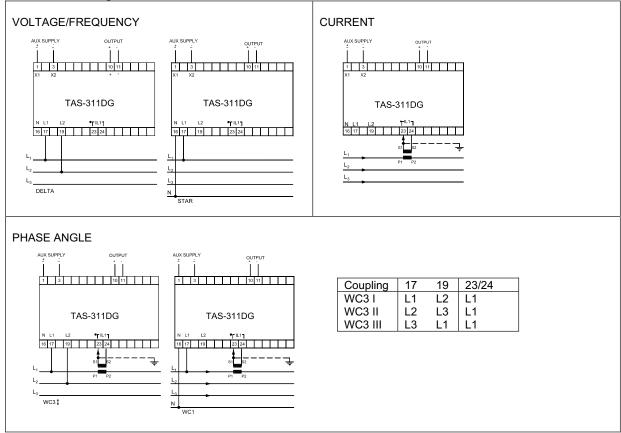
Type TAS-311DG

4921220038E

- Measures voltage, current, frequency or phase angle on AC networks
- Class 0.5 (IEC-688) measurement
- Supply and measuring voltage up to 690V
- Easy configuration via PC-interface possible
- Non-linear output characteristics possible


CE

Application


TAS-311DG is a micro-controller based AC-transducer with 1 analogue output for measurement of RMS-voltages, RMScurrent, phase angle or frequency on an AC-network. TAS-311DG can be delivered pre-configured or it can be delivered un-configured for customer configuration through the PC-interface. The PC-configuration software allows free choise of voltage, current, phase angle or frequency measurement including configuration of the measuring range and output range without any mechanical settings or adjustments inside the transducer. The transducer holds no mechanical moving parts like potentiometers and therefore the calibration stability is excellent.

TAS-311DG can be configured as a normal linear transducer or with up to three slopes giving the possibility for a higher resolution in one or two ranges of the measurement. See figure below for an example of two slopes. Upper and lower output limitations can also be configured.

Example of dual slope (for further examples see data sheets for TAS-331DG/TAS-321DG)

General technical specifications

Accuracy: Voltage/current: Class 0.5 (-10...15...30...55°C) according to IEC 688

Frequency: Class 0.2 of f max. (-10...15...30...55°C) according to IEC 688

Phase angle: Class 1.0 (-10...<u>15...30</u>...55°C) according to IEC 688

Meas. current (In): 0.75/1.5/3.0/6.0A Meas. range (In): 0...200%

Overload, currents: 20A max., continuously

75A max. for 10 s 240A max. for 1 s

Load: Max. 0.5VA

Meas. voltage (Un): 73/140/254/400V phase to neutral Meas. range (Un): 1...120%

127/240/440/690 phase to phase Meas. range (Un): 1...120%

Overload, voltages: 1.2 x U_n max., continuously

2 x U_n max. for 10 s

Load: Min. $480k\Omega$

Frequency range: 30...45...65...80Hz Indication: Red LED function:

(The LED is located behind the front plate) Calibration error = flash frequency 5Hz Configuration error = flash frequency 1Hz

Output: 1 analogue output

Standard range: Output (0...100%): 0...1mA, 0...5mA, 0...10mA, 0...20mA, 0...1V, 0...5V, 0...10V

Output (10...100%): 0.1...1mA, 0.5...5mA, 1...10mA, 2...20mA, 0.1...1V, 0.5...5V, 1...10V Output (20...100%): 0.2...1mA, 1...5mA, 2...10mA, 4...20mA, 0.2...1V, 1...5V, 2...10V Output (-100...0...100%): -1...0...1mA, -5...0...5mA, -10...0...10mA, -20...0...20mA, -1...0..1V,

-5...0...5V, -10...0...10V Other ranges possible

Limit: Max. ±120% of nominal output
Output load: Current: Max. 10V (max. 1kΩ)

Voltage: Max. 20mA

Output cable: Max. length 30m

 Δ out/ Δ R_{load}: 10V, 5V, 1V, 20mA ranges according to IEC 688

10mA, 5mA, 1mA ranges ±0.5%

Ambient temperature: -10...55°C (nominal)

-25...70°C (operating) -40...70°C (storage)

Temperature coefficient: Max. ±0.2% of full scale per 10°C

Response time: Current/voltage: <105ms in the range 0...90% of nominal input according to IEC 688

<300ms in the range 0...30% of nominal input <85ms in the range 30...100% of nominal input

Frequency: <75ms, typical value 50ms Phase angle: <275ms, typical value 200ms

Ripple: Twice the class index (peak to peak measurement) according to IEC 688

Galvanic separation: Between inputs, outputs and aux. supply: 3750V-50Hz-1 min.

Supply voltage: 57.7-63.5-100-110-127-200-220-230-240-380-400-415-440-450-480-660-690VAC ±20%

24-48-110-220VDC -25/+30%

Consumption: (Aux. supply) 3.5VA/2W
Climate: HSE, to DIN 40040

EMC: According to EN 61000-6-1/2/3/4

Protection: Housing: IP40. Terminals: IP20 to IEC 529 and EN 60529

Connections: Max. 2.5mm² multi-stranded Max. 4.0mm² single-stranded

Materials: All plastic parts are self-extinguishing to UL94 (V1)

Specific technical specifications

Voltage: Measuring voltage: 57...690VAC

Start value: 0...67% of end value

End value: 100...120% of measuring voltage

Connection: Star connection (UL1-N): 57V...400VAC
Delta connection (UL1-L2): 100V...690VAC

Current: Measuring current: 0.5...8A

Start value: 0...67% of end value
End value: 100% of measuring current

Specific technical specifications, continued

Measuring range: 20Hz...80Hz Frequency:

Start value: 20Hz...76Hz End value: 40Hz...80Hz

Measuring span: 4Hz < end value - start value

Connection: Star connection (UL1-N): 57V...400VAC Meas. range (Un): 30...120%

Delta connection (UL1-L2): 100V...690VAC Meas. range (Un): 30...120%

Phase angle: Reference: Delta phi = 180°, Sine wave Un and Inom (Inom = 1A or 5A)

Voltage influence 1.5% between 50...120% Un Current influence 1.5% between 50...150% Inom 2.5% between 20...50% Inom

Measuring range: 0°...60° / 360° electrical degrees

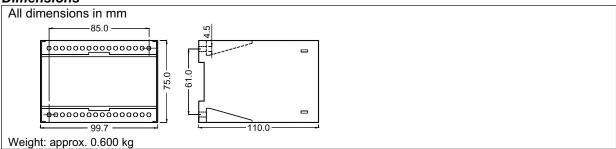
Start value: -359.9°...360° End value: -359.9°...360°

Measuring span: 60° < difference between start and end values <360°

(IL1 and UL1-N) or (IL2 and UL2-N) or (IL3 and UL3-N): 57...400VAC Connection: WC1:

> WC3 I: 100...690VAC (IL1 and UL1-L2): WC3 II: (IL1 and UL2-L3): 100...690VAC WC3 III: (IL1 and UL3-L1): 100...690VAC

Meas. range (Un): 30...120%


Order specifications (examples)

The examples below are order specifications for pre-configured transducers. For un-configured transducers only auxiliary voltage must be specified.

Туре	TAS-311DG			
Measurement:	Voltage	Current	Frequency	Phase angle
Measuring range:	0kV8kV12kV	0120A	455055Hz	-90°60°0°60°90°
				00.5cap10.50ind
Connection:	Delta (phase-phase)	NA	Star (phase-neutral)	WC3 I
VT ratio:	10kV/100V	NA	-	-
Input voltage:	080120V	NA	400VAC	400V
CT ratio:	NA	100/1A	NA	500/5A
Input current:	NA	1.2A	NA	5A
Transfer curve:	Dual slope	Single slope	Single slope	Triple slope
Output start value:	0mA	4mA	4mA	-10V
Threshold 1:	4mA	-	-	-8V
Mid value:	12mA	-	12mA	0V
Threshold 2:	-	-	-	8V
Output end value:	20mA	20mA	20mA	10V
Output lower limit:	0mA	0mA	4mA	-12V
Output upper limit:	22mA	24mA	21.5mA	12V
Auxiliary voltage:	100VAC	110VDC	400VAC	220VDC

PC-configuration kit containing connection cable and software for customer configuration must be ordered separately.

Dimensions

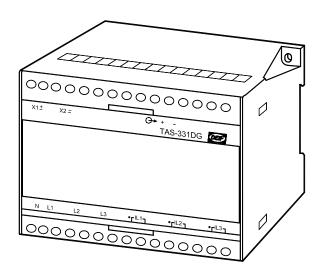
Mounting instructions

TAS-311DG is designed for panel mounting, being mounted on a 35 mm DIN rail, or by means of two 4 mm screws.

The design of the transducer makes mounting of it close to similar equipment possible, however make sure there is min. 50 mm between the top and bottom of the transducer and other equipment. The DIN rail must always be placed horizontally when several transducers are mounted on the same rail.

> Due to our continuous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

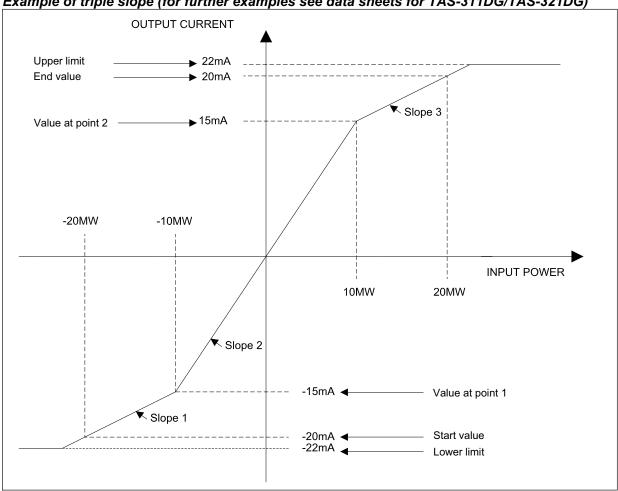


Selectable AC-transducer

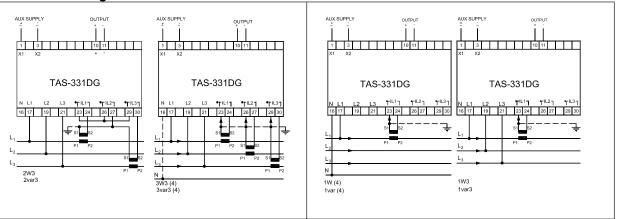
Type TAS-331DG

4921220036E

- Measures power or reactive power on 3-phase AC networks
- Class 0.5 (IEC-688) measurement
- Supply and measuring voltage up to 690V
- Easy configuration via PC-interface possible
- Non-linear output characteristics possible


CE

Application


TAS-331DG is a micro-controller based AC-transducer with 1 analogue output for measurement of power or reactive power on an AC-network. TAS-331DG can be delivered pre-configured to the desired measuring value and range or it can be delivered un-configured for customer configuration through the PC-interface. The PC-configuration makes free adjustment of the full input range and output range possible without any mechanical settings or adjustments inside the transducer. The transducer holds no mechanical moving parts like potentiometers and therefore the calibration stability is excellent. TAS-331DG will check the wiring for faults when starting up and indicate possible faults on a LED.

TAS-331DG can be configured as a normal linear transducer or with up to three slopes giving the possibility for a higher resolution in one or two ranges of the measurement. See figure below for an example of three slopes. Upper and lower output limitations can also be configured.

Connection diagram

Technical specifications

Accuracy: Class 0.5 (-10...<u>15...30</u>...55°C) according to IEC 688

Influence, phase angle: ≤ ±0.75°

Meas. current (In): 0.75/1.5/3.0/6.0A Meas. range (In): 0...200%

Overload, currents: 20A max., continuously 75A max. for 10 s

240A max. for 1 s

Load: Max. 0.5VA per phase

Meas. voltage (Un): 73/140/254/400V phase to neutral Meas. range: 30...120%Un (57...400V)

127/240/440/690 phase to phase Meas. range: 30...120%U_n (100...690V)

Overload, voltages: 1.2 x U_n max., continuously

2 x U_n max. for 10 s

Load: Min. $480k\Omega$

Frequency range: 30...<u>45...65</u>...80Hz

Note: For fundamental frequency (1. harmonic) outside 20Hz...80Hz

the input is fixed to 0

Indication: Red LED function:

(The LED is located behind the front plate)

Incorrect wiring = constant light, only active for coupling 1W3, 2W3, 3W3(4) and 1var3, 2var3,

3var3(4). Check at power up, in case of doubt disconnect supply and reconnect

Calibration error = flash frequency 5Hz Configuration error = flash frequency 1Hz

Output: 1 analog output

Standard range: Output (0...100%): 0...1mA, 0...10mA, 0...20mA, 0...1V, 0...5V, 0...10V

Output (10...100%): 0.1...1mA, 0.5...5mA, 1...10mA, 2...20mA, 0.1...1V, 0.5...5V, 1...10V Output (20...100%): 0.2...1mA, 1...5mA, 2...10mA, 4...20mA, 0.2...1V, 1...5V, 2...10V Output (-100...0...100%): -1...0..1mA, -5...0...5mA, -10...0...10mA, -20...0...20mA, -1...0..1V,

-5...0...5V, -10...0...10V Other ranges possible

Limit: Max. ±120% of nominal output

Output load: Current: Max. 10V (max. $1k\Omega$)

Voltage: Max. 20mA

Output cable: Max. length 30m

 Δ out/ Δ R_{load}: 10V, 5V, 1V, 20mA ranges according to IEC 688

10mA, 5mA, 1mA ranges ±0.5%

Ambient temperature: -10...55°C (nominal)

-25...70°C (operating) -40...70°C (storage)

Temperature coefficient: Max. ±0.2% of full scale per 10°C

Response time: Coupling 2W3/2var3, 3W3/3var3, 3W4/3var4 <225ms, typically 200ms

Coupling 1W/1var, 1W4/1var4 <150ms, typically 125ms

Coupling 1W3/1var3 <125ms, typically 100ms

Ripple: Twice the class index (peak to peak measurement) according to IEC 688

Galvanic separation: Between inputs, outputs and aux. supply: 3750V-50Hz-1 min.

Supply voltage: 57.7-63.5-100-110-127-200-220-230-240-380-400-415-440-450-480-660-690VAC ±20%

24-48-110-220VDC -25/+30%

Consumption: (Aux. supply) 3.5VA/2W

Climate: HSE, to DIN 40040

EMC: According to EN 61000-6-1/2/3/4

Protection: Housing: IP40. Terminals: IP20 to IEC 529 and EN 60529

Connections: Max. 2.5mm² multi-stranded

Max. 4.0mm² single-stranded

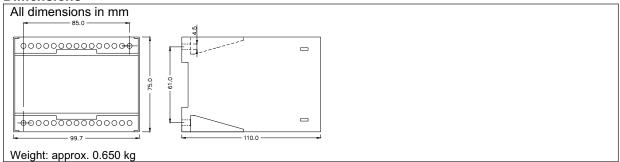
Materials: All plastic parts are self-extinguishing to UL94 (V1)

Order specifications (examples)

The examples below are order specifications for pre-configured transducers. For un-configured transducers only auxiliary voltage must be specified.

	Example of active power transducer:	Example of reactive power transducer:
Туре	TAS-331DG	TAS-331DG
Measuring range:	02MW	01Mvar (2Mvar) 1)
Coupling ²⁾ :	1W3	1var3
VT ratio:	10kV/100V	10kV/100V
Measuring voltage:	100V	100V
CT ratio:	100/5A	100/5A
Transfer curve:	Single slope	Dual slope
Output start value:	4mA	4mA
Value at point 1:	-	20mA corresponding to 1Mvar 1)
Output end value:	20mA	20mA corresponding to 2Mvar 1)
Output lower limit:	4mA	4mA
Output upper limit:	21.5mA	20mA must be equal to end value 1)
Auxiliary voltage:	110V DC	110V DC

As the transducer for measurement of reactive power is configured at 50% var in proportion to the active power, the function "dual slope" is activated. This method can be used to ensure that the dynamic range of the current input is not exceeded on the var transducer.


Check of the chosen measuring range is within the configuration range of the transducer.

At 1W / 1var coupling the factor 1.73 is left out of the above calculation.

If I (current) is beyond 0.375A...6A another Ct with a larger or smaller ratio is chosen.

PC-configuration kit containing connection cable and software for customer configuration must be ordered separately.

Dimensions

Mounting instructions

TAS-331DG is designed for panel mounting, being mounted on a 35 mm DIN rail, or by means of two 4 mm screws.

The design of the transducer makes mounting of it close to similar equipment possible, however make sure there is min. 50 mm between the top and bottom of the transducer and other equipment. The DIN rail must always be placed horizontally when several transducers are mounted on the same rail.

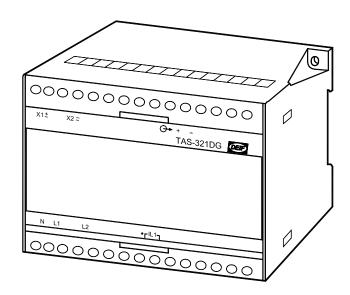
Due to our continuous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

Tel.: +45 9614 9614, Fax: +45 9614 9615 E-mail: deif@deif.com, URL: www.deif.com

-- page 363 --

²⁾ At coupling 1W4/1var4 L-L voltage must be stated when ordering.

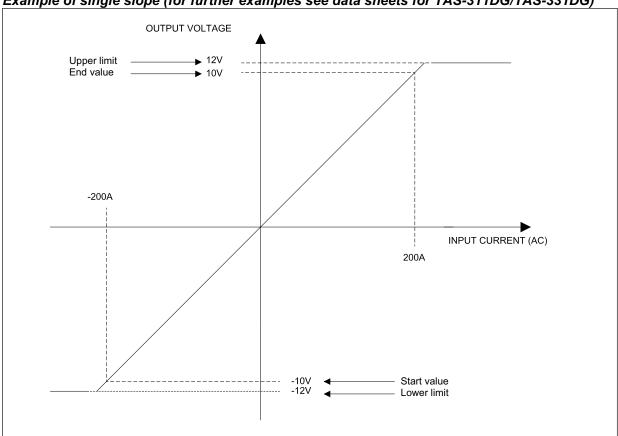


Selectable AC-transducer

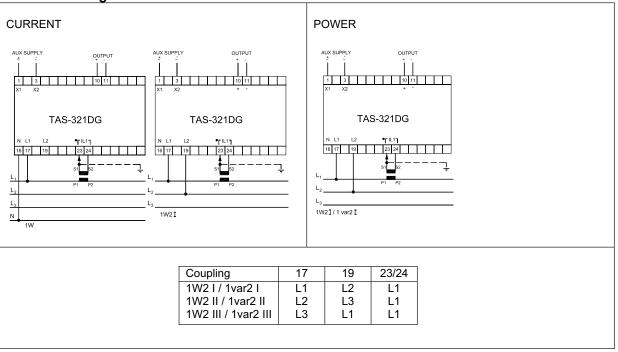
Type TAS-321DG

4921220040D

- Bi-directional current measurement on AC networks
- Power measurement using 2 phases on 3-phase networks
- Class 0.5 (IEC-688) measurement
- Supply and measuring voltage up to 690V
- Easy configuration via PC-interface possible
- Non-linear output characteristics possible


CE

Application


TAS-321DG is a micro-controller based AC-transducer with 1 analogue output for measurement of bi-directional current. The sign for current direction is based on the measured power direction. Furthermore the transducer can be used for measurement of active power or reactive power on a 3-phase network where only 2 phases are available for the measurement. TAS-321DG can be delivered pre-configured or it can be delivered un-configured for customer configuration through the PC-interface.

TAS-321DG can be configured as a normal linear transducer or with up to three slopes giving the possibility for a higher resolution in one or two ranges of the measurement. Upper and lower output limitations can also be configured.

Example of single slope (for further examples see data sheets for TAS-311DG/TAS-331DG)

Connection diagram

General technical specifications

Accuracy: Current/power: Class 0.5 (-10...15...30...55°C) according to IEC 688

Influence, phase angle: ≤ ±0.75°

Meas. current (In): 0.75/1.5/3.0/6.0A Meas. range (In): 0...200%

Overload, currents: 20A max., continuously

75A max. for 10 s 240A max. for 1 s

Load: Max. 0.5VA

Meas. voltage (Un): 73/140/254/400V phase to neutral Meas. range (Un): 30...120% (57...400V)

127/240/440/690 phase to phase Meas. range (Un): 30...120% (100...690V)

Overload, voltages: 1.2 x U_n max., continuously

 $2 \times U_n$ max. for 10 s

Load: Min. $480k\Omega$

Frequency range: 30...45...65...80Hz

Note: For fundamental frequency (1. harmonic) outside 20Hz...80Hz the input is fixed at 0

Indication: Red LED function:

(The LED is located behind the front plate) Calibration error = flash frequency 5Hz Configuration error = flash frequency 1Hz

Output: 1 analogue output

Standard range: Output (0...100%): 0...1mA, 0...5mA, 0...10mA, 0...20mA, 0...1V, 0...5V, 0...10V

Output (10...100%): 0.1...1mA, 0.5...5mA, 1...10mA, 2...20mA, 0.1...1V, 0.5...5V, 1...10V Output (20...100%): 0.2...1mA, 1...5mA, 2...10mA, 4...20mA, 0.2...1V, 1...5V, 2...10V Output (-100...0...100%): -1...0...1mA, -5...0..5mA, -10...0...10mA, -20...0...20mA, -1...0..1V,

-5...0...5V, -10...0...10V

Other ranges possible

Limit: Max. ±120% of nominal output

Output load: Current: Max. 10V (max. $1k\Omega$)

Voltage: Max. 20mA

Output cable: Max. length 30m

 Δ out/ Δ R_{load}: 10V, 5V, 1V, 20mA ranges according to IEC 688

10mA, 5mA, 1mA ranges ±0.5%

Ambient temperature: -10...55°C (nominal)

-25...70°C (operating) -40...70°C (storage)

Temperature coefficient: Max. ±0.2% of full scale per 10°C

Response time: <150ms, typically 125ms

Ripple: Twice the class index (peak to peak measurement) according to IEC 688

Galvanic separation: Between inputs, outputs and aux. supply: 3750V-50Hz-1 min.

Supply voltage: 57.7-63.5-100-110-127-200-220-230-240-380-400-415-440-450-480-660-690VAC ±20%

24-48-110-220VDC -25/+30%

Consumption: (Aux. supply) 3.5VA/2W

Climate: HSE, to DIN 40040

EMC: According to EN 61000-6-1/2/3/4

Protection: Housing: IP40. Terminals: IP20 to IEC 529 and EN 60529

Connections: Max. 2.5mm² multi-stranded

Max. 4.0mm² single-stranded

Materials: All plastic parts are self-extinguishing to UL94 (V1)

Specific technical specifications

Current: Measuring current: 0.5...8A

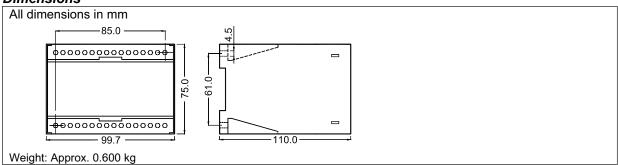
Start value: -100...+67% of end value End value: 100% of measuring current

Current/power: Connection 1W note only current: (IL1 and UL1-N) or (IL2 and UL2-N) or (IL3 and UL3-N): 57...400VAC

 1W2 I:
 (IL1 and UL1-L2):
 100...690VAC

 1W2 II:
 (IL1 and UL2-L3):
 100...690VAC

 1W2 III:
 (IL1 and UL3-L1):
 100...690VAC


Order specifications (examples)

The examples below are order specifications for pre-configured transducers. For un-configured transducers only auxiliary voltage must be specified.

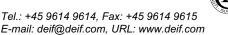
Туре	TAS-321DG		
Measurement:	Bi-directional current	Power	
Measuring range:	-1200120AAC	020MW	
Coupling:	1W	1W2 II	
VT ratio:	-	10kV/100V	
Input voltage:	400VAC	100VAC	
CT ratio:	100/1A	100/5	
Input current:	-1.201.2A	NA	
Transfer curve:	Single slope	Single slope	
Output start value:	-10V	4mA	
Threshold 1:	-	-	
Mid value:	0	12mA	
Threshold 2:	-	-	
Output end value:	10V	20mA	
Output lower limit:	-12V	4mA	
Output upper limit:	12V	21.5mA	
Auxiliary voltage:	110VDC	400VAC	

PC-configuration kit containing connection cable and software for customer configuration must be ordered separately.

Dimensions

Mounting instructions

TAS-321DG is designed for panel mounting, being mounted on a 35 mm DIN rail, or by means of two 4 mm screws.


The design of the transducer makes mounting of it close to similar equipment possible, however make sure there is min. 50 mm between the top and bottom of the transducer and other equipment. The DIN rail must always be placed horizontally when several transducers are mounted on the same rail.

power in control

®

Due to our continuous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

Temperature transducers

Type TEMAX-3

4921220022C

TEMAX-3.4B

- 2 wire transducer for remote monitoring of 2, 3 or 4 temperatures
- Protected against R.F. magnetic fields
- Read-out of highest output
- Plug-in PCBs
- Protection: IP65

CE

Available types

Туре	TEMAX-3.2B	TEMAX-3.3B	TEMAX-3.4B
For sensors	2 Pt100Ω sensors	3 Pt100Ω sensors	4 Pt100Ω sensors

Introduction

TEMAX-3 is intended for monitoring of 2 to 4 temperatures. TEMAX-3.2B and TEMAX-3.3B may later on at our factory be upgraded to 3 or 4 measuring points (type TEMAX-3.3B and TEMAX-3.4B respectively). The temperature transducers type TEMAX-3 are CE classified for residential, commercial and light industry plus industrial environment.

Application

TEMAX-3 is applied to monitor inputs from 2, 3 or 4 Pt100 Ω resistance sensors, indicating the highest temperature on its built-in 240 $^{\circ}$ indicating instrument.

Operating principle

TEMAX-3 is a 2 wire transducer with an output signal of 4...20mA.

The term "2-wire transducer" refers only to the output signal as the power for the electronics is transmitted through the two output wires and not by means of a separate auxiliary voltage (4 wire principle). TEMAX-3 is placed near the measuring points and the two output wires carry the power to supply the electronics as well as the output signal.

The output current can be considered as two components: a constant 4mA for the amplifier etc. of the transducer and a variable signal of 0...16mA, which changes proportionally to the measured input signal. The input signal corresponds to the output 4...20mA.

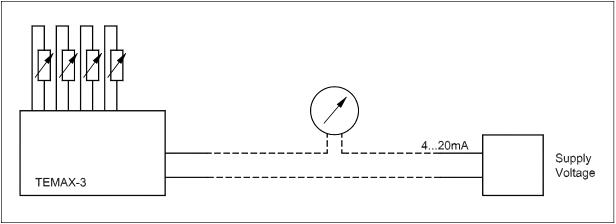


Fig. 1

Indicating instruments, recorders, controllers etc. can be connected as shown in series with the output circuit and the supply voltage.

The output current is proportional to the temperature and independent of varying supply voltage, lead resistance and load within the specified limits.

The 2, 3 or 4 temperatures are measured by means of $Pt100\Omega$ sensors connected in 2 wire couplings. Each sensor forms part of a wheatstone bridge, whose diagonal voltage is amplified by an operational amplifier.

The 2, 3 or 4 amplifier outputs are compared and the signal representing the highest temperature is selected. This signal controls an output amplifier which converts the signal into the 4...20mA constant current output.

Output under fault conditions

If one of the sensors or its leads is/are broken, TEMAX-3 will give an output higher than 20mA (max. 32mA).

In this case there will be no temperature measurement but a clear indication of fault.

If one of the sensors or the input leads is/are short-circuited, the other measurements remain unaffected but no typical change of the output signal will occur. However, such faults are not typical. Pt 100Ω sensors are very reliable, and if they do fail, it is usually caused by physical damage resulting in an open circuit condition.

A short-circuit fault can only be detected by periodical activation of the push-buttons. At the actual point the meter will indicate less than 0°C.

Installation

In order to fully utilize the 2-wire system, the transducer should be placed near the measuring points to gain the following advantages:

Noise suppression
 The signal is transmitted at a high level and a relative insensitivity to noise and

interference is thus achieved.

Simple wiring
 Only 2 wires are to be drawn from the transducer to the switchboard.

The Pt100 Ω sensors are connected to the TEMAX-3 in "2-wire couplings". The resistance in the sensor leads is in series with the Pt100 Ω sensor, and an error would consequently occur, if not allowed for. To avoid this error, the TEMAX-3 is adjusted to a fixed resistance of 0.35Ω for each sensor.

The mentioned 0.35Ω corresponds to 2 x 15 m - 1.5 mm² or 2 x 10 m - 1.0 mm² wires, etc.

In order to simplify the TEMAX-3, it is not provided with variable lead compensations and check resistors. The lead resistance should be as close as possible to the mentioned 0.35Ω to ensure highest achievable accuracy.

Deviations from the 0.35Ω will cause an error of $+1^{\circ}$ C per $+0.38\Omega$, without recalibration.

Mechanical construction

The transducer is housed in a polycarbonate case (to IP65, i.e. protected against water jets) with a transparent cover and 4 watertight push-buttons.

The case is fitted with 5 PG9 cable glands and has an internal terminal block for connection of up to 4 mm² wires.

All electrical components are protected against mechanical damage and dust by means of the thermoplastic case with plug-in PCBs and a metal cover plate.

The transducer is furthermore equipped with a built-in indicating instrument, 48 x 48 mm with 240° scale.

Electrical construction

TEMAX-3 consists of a base board plus 4-6 plug-in PCBs, which are individually calibrated, facilitating service and repair in the event of faulty function:

- Amplifiers for the Pt100Ω sensors (2-4 PCBs)
- Voltage supply and output amplifier (1 PCB)
- Built-in push-button function (1 PCB)

General technical specifications

Temperature: -10...55°C (nominal) -25...70°C (operating) -40...70°C (storage).

Temperature drift: Max. 0.2% per 10°C.

Test voltage: 2000V AC - 50Hz - 1 min. between mounting plate and input/output.

500V AC - 50Hz - 1 min. between inner screen and input/output.

R.F. electromagnetic fields: To IEC 801-3 (27...1000MHz, 10V per meter).

Climate: Class HSE, to DIN 40040.

EMC: To EN 50081-1/2, EN 50082-1/2, SS4361503 (PL4) and IEC 255-22-1 (class 3).

Protection: Case: IP65, to IEC 529 and EN 60529.

Materials: Case: light grey polycarbonate.

With 5 PG9 glands and internal terminal block.

Connections: Cable diametre: 4...10 mm. Wire diametre: max. 4 mm². Extra terminals are

provided for looping of any screens from the input/output cables.

Mounting: For base mounting. Position as required, however, vertical mounting recom-

mended to reduce any ingress of liquid and dust etc. via the cable glands.

Technical specifications

Measuring range: 0...150°C or 0...200°C (other ranges on request).

Temperature sensor: Pt100 Ω , 2 wire.

Lead compensation: Adjusted for lead resistance 0.35Ω corresponding to a pair of 15 m - 1.5 mm² or 10 m

- 1 mm² copper connecting leads.

Lead compensation resistance: None.

Maximum continuous overload: Max. 36V DC (refers to all inputs and output).

Output: 4...20mA constant current. The temperature of any input can be read on the built-in

instrument.

Maximum output: 32mA on extended input (e.g. open circuit or disconnected sensor).

Ripple on output: Max. 0.5% pp at $V_S = 2 V_{pp}$ (10...400Hz).

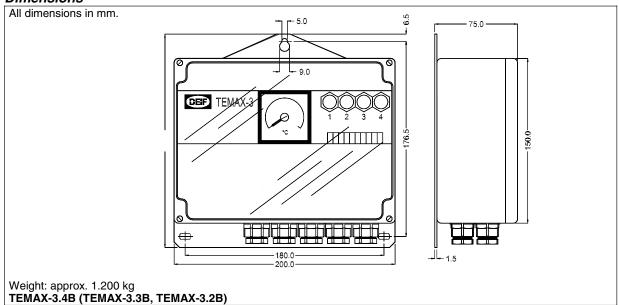
Output non-linearity: Max. 0.1%.

Accuracy: Class 1.0 (1%) ±0.5°C (-10...15...30...55°C), to IEC 688 and EN 60688.

Comparison accuracy: 0.5°C.

Auxiliary voltage (V_S): 13...36V DC at 0.1 V_{pp} ripple. 14...36V DC at 2 V_{pp} ripple.

Max. ripple (V_R) : 5 V_{pp} .


Load on output (R_L): Depends on the aux. voltage V_S : $ax \cdot R = \frac{(B \cdot V + B)^2}{(B \cdot V + B)^2}$ (OHMS)

Aux. voltage influence: Max. 0.1% from 13...36V DC at 0.1V_{pp} ripple.

Response time: Approx. 1 s for 100% change of input, approx. 2.5 s on initial energisation (for

deviation 0.5%).

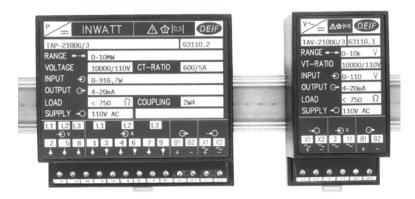
Dimensions

Order specifications

Type Measuring range
Example: TEMAX-3.3B 0...200°C

Due to our continuous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark



Transducers for AC measurement

Types TAP, TAQ, TMF, TAA, TAV, TAC

4921220002E

- Measurement of: watt, var, frequency, phase angle, voltage, current
- Accuracy class 0.5
- For mounting on DIN rail
- Compact design
- Aux. voltage: 57.7...440V AC or 24...220V DC
- According to IEC 688

CE

Transducer type	P Watt		
Туре	TAP-210DG/3. 1W	TAP-210DG/3, 1W3	
Measuring	Single phase network	3-Phase 3 wire network Balanced load	
Connection diagrams for DEIF transducers for DIN rail mounting Numbering of terminals according to DIN 43807	2 11 1 3 B1 B2 X1 X2	2 5 8 1 3 B1 B2 X1 X2 OUTPUT SUPPLY L1 P1 P2 L2 L3	
Measuring principle	Time-Division-Multiplication (TDM) RMS measurem	nent	
Measuring voltage (U _{nom})	57.7440V AC ±20% (0120% U _{nom} with separate U	J _{aux}). (≤ 0.5VA per phase)	
Measuring current (I _{nom})	0.510A AC. Measuring range: 0120% I _{nom} (≤ 0.3\	/A per phase)	
Measuring range	0P _{nom} / -P _{nom} 0+P _{nom}		
Measuring frequency	4565Hz (300500Hz)		
Overloads Voltages	1.2 x U _{nom} , cont. / 2 x U _{nom} for 10 s		
Overloads Currents	2 x I _{nom} , cont. / 10 x I _{nom} for 10 s (max. 75A) / 40 x I _{nom} for 1 sec (max. 300A)		
Output (0100%)	01mA, 05mA, 010mA, 020mA, 01V, 010V		
Output (20100%)	0.21mA, 15mA, 210mA, 420mA, 0.21V, 210V		
Output (-100%0+100%)	-10+1mA, -50+5mA, -100+10mA, -200+20mA, -10+1V, -100+10V		
Output loads	Current Output: max. 15V, voltage Output: max. 20	mA	
Accuracy	Class 0.5 (-10 <u>1530</u> 55°C) according to IEC 688		
Response time/ripple	<150 ms / 1% _{pp} according to IEC 688		
Δout / ΔU _{aux} / Δf _{aux} / ΔR _{load}	Max. 0.1%/ Δ10% U _{aux} / 0.1%/4565Hz / 0.1%/ ΔR _I	_{oad} -max.	
Temperature coefficient	Typically 0.15% per 10°C. Max. 0.2% per 10°C		
Ambient temperature	-10+55°C (nominal)25+70°C (operating)40.	.+70°C (storage)	
Auxiliary supply (U _{aux}) (4565Hz)	57.7 - 63.5 - 100 - 110 - 120 - 127 - 220 - 230 - 240	0 - 380 - 415 - 440V AC ±20% (3.5VA)	
Test voltage	2000V - 50Hz - 1 min.		
EMC	According to EN 50081-1/2, EN 50082-1/2, SS4361	1503 (PL4), IEC 255-4 (class 3). CE marked	
Climate	Class HSE, according to DIN 40040		
Protection	Case: IP52. Terminals: IP20. According to IEC 529 and EN 60529		
Terminals	Screw Terminals. Multi-stranded: 2.5 mm² / single-s	stranded: 4.0 mm²	
	<u> </u>		

Order specifications

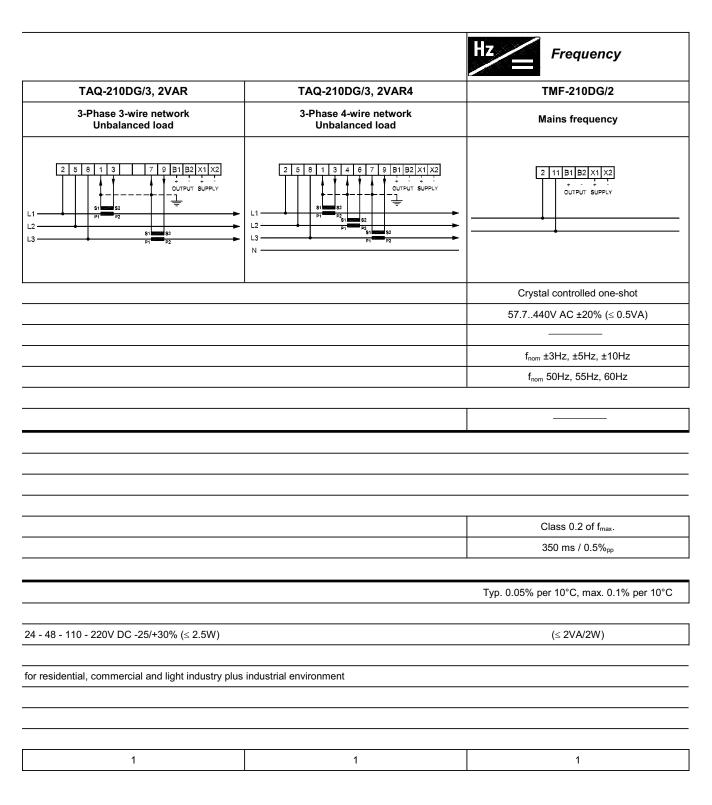
See rear page

Case type

Туре		TAP-210DG/3 INWATT	TAP-210DG/3 INWATT
Connection	(See drawing)	1W	1W3
Measuring range		x	x
Current transformer	$(I_{pri}:I_{sec})$	x	x
Measuring voltage	(U _{nom})	x	х
Voltage transformer	$(U_{pri}:U_{sec})$	x	x
Auxiliary voltage	(U _{aux})	x	x
Output signal		x	х

1

TAP-210DG/3, 1W4	TAP-210DG/3, 2W	TAP-210DG/3, 2W4
3-Phase 4-wire network Balanced load	3-Phase 3 wire network Unbalanced load	3-Phase 4-wire network Unbalanced load
2 11 1 3 B1 B2 X1 X2 OUTPUT SUPPLY L1 P1 P2 L3 N	2 5 8 1 3 7 9 B1 B2 X1 X2	2 5 8 1 3 4 6 7 9 B1 B2 X1 X2 OUTPUT SUPPLY 1 =
24 - 48 - 110 - 220V DC -25/+30% (≤ 2.5W)		
24 - 40 - 110 - 220 V DC -23/+30 /6 (≥ 2.3VV)		
for residential, commercial and light industry plus	industrial environment	
1	1	1

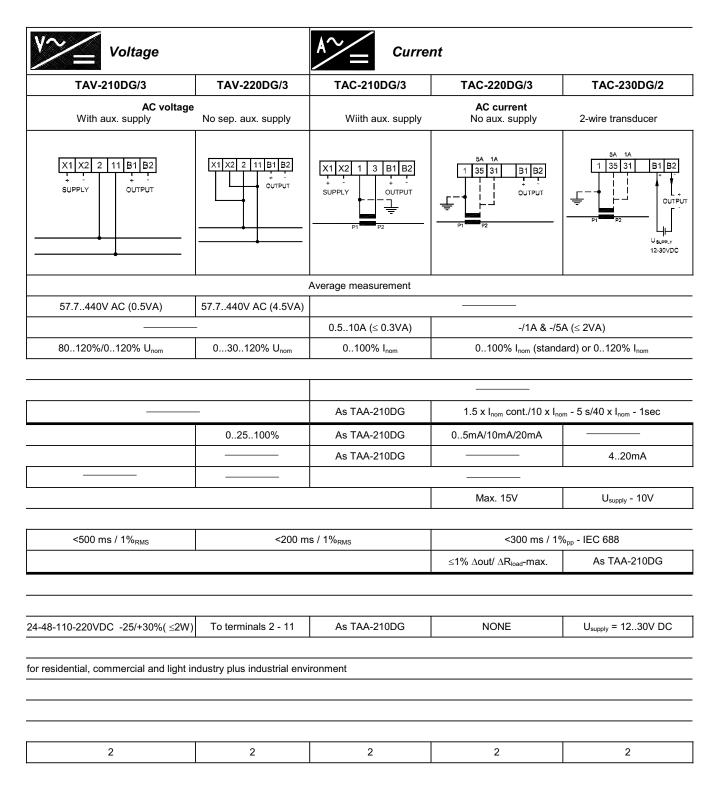

TAP-210DG/3 INWATT	TAP-210DG/3 INWATT	TAP-210DG/3 INWATT
1W4	2W	2W4
х	x	x
х	x	х
x	x	x
x	x	x
x	x	x
x	х	x

See rear page for calculation of measuring range for watt/var transducers

Transducer type Type **TAQ-210DG/3, 1VAR3 TAQ-210DG/3, 1VAR4** 3-Phase 3-wire network 3-Phase 4-wire network Measuring Balanced load Balanced load 5 8 1 3 **Connection diagrams** OUTPUT SUPPLY OUTPUT SUPPLY for DEIF transducers for DIN rail mounting L1 **Numbering of terminals** L2 according to DIN 43807 L3 Ν Measuring principle Time-Division-Multiplication (TDM) RMS measurement 57.7..440V AC ±20% (0..120% U_{nom} with separate U_{aux}), (≤ 0.5VA per phase) Measuring voltage (Unom) Measuring current (Inom) 0.5..10A AC. Measuring range: 0..120% I_{nom} (≤ 0.3VA per phase) Measuring range 0..Q_{nom} / -Q_{nom}..0..+Q_{nom} Measuring frequency 45..65Hz (300..500Hz) **Overloads** Voltages $1.2 \times U_{nom}$, cont. / $2 \times U_{nom}$ for 10 sOverloads Currents 2 x I_{nom}, cont. / 10 x I_{nom} for 10 s (max. 75A) / 40 x I_{nom} for 1 sec (max. 300A) Output (0..100%) 0..1mA, 0..5mA, 0..10mA, 0..20mA, 0..1V, 0..10V Output (20..100%) 0.2..1mA, 1..5mA, 2..10mA, 4..20mA, 0.2..1V, 2..10V Output (-100%..0..+100%) -1..0..+1mA, -5..0..+5mA, -10..0..+10mA, -20..0..+20mA, -1..0..+1V, -10..0..+10V **Output loads** Current Output: max. 15V, voltage Output: max. 20mA Class 0.5 (-10..<u>15..30</u>..55°C) according to IEC 688 Accuracy Response time/ripple <150 ms / 1%pp according to IEC 688 Δ out / Δ U_{aux} / Δ f_{aux} / Δ R_{load} Max. 0.1%/ Δ 10% U_{aux} / 0.1%/45..65Hz / 0.1%/ Δ R_{load}-max. Temperature coefficient Typically 0.15% per 10°C. Max. 0.2% per 10°C Ambient temperature -10..+55°C (nominal). -25..+70°C (operating). -40..+70°C (storage) Auxiliary supply (U_{aux}) (45..65Hz) 57.7 - 63.5 - 100 - 110 - 120 - 127 - 220 - 230 - 240 - 380 - 415 - 440V AC ±20% (≤3.5VA) Test voltage 2000V - 50Hz - 1 min. **EMC** According to EN 50081-1/2, EN 50082-1/2, SS4361503 (PL4), IEC 255-4 (class 3). CE marked Class HSE, according to DIN 40040 Climate Case: IP52. Terminals: IP20. According to IEC 529 and EN 60529 Protection Terminals Screw Terminals. Multi-stranded: 2.5 mm² / single-stranded: 4.0 mm² Case type 1 See rear page

Order specifications

Туре		TAQ-210DG/3 INWATT	TAQ-210DG/3 INWATT
Connection	(See drawing)	1VAR3	1VAR4
Measuring range		x	x
Current transformer	$(I_{pri}:I_{sec})$	x	x
Measuring voltage	(U _{nom})	x	x
Voltage transformer	$(U_{pri}:U_{sec})$	x	х
Auxiliary voltage	(U _{aux})	x	х
Output signal		x	x



TAQ-210DG/3 INWATT	TAQ-210G/3 INWATT	TMF-210DG/2
2VAR	2VAR4	
х	x	х
х	x	
х	x	x
х	x	x
х	x	x
х	x	x

Phase angle Transducer type Type TAA-210DG/2, WC1 TAA-210DG/2, WC3 3-Phase network 3-Phase network Measuring 4-wire 3- or 4-wire 3 B1 B2 X1 X2 **Connection diagrams** for DEIF transducers for DIN rail mounting **Numbering of terminals** L2 L2 according to DIN 43807 L3 L3 N Measuring principle Zero crossing detection. NOTE: Output proportional to phase angle (φ) Measuring voltage (Unom) 57.7..440V AC ±20% (≤ 0.5VA) Measuring current (Inom) -/1A - -/5A. Measuring range: 20..120% I_{nom} (class 0.5) 5..20% (class 1) (\leq 0.3VA) Measuring range 0.5 cap...1..0.5 ind. / 0.7 cap...1..0.3 ind. / 0..1 cap. / 0..1 ind. Measuring frequency 45..65Hz (300..500Hz) **Overloads** Voltages $1.2 \times U_{nom}$, cont. / $2 \times U_{nom}$ for 10 sOverloads Currents 2 x I_{nom}, cont. / 10 x I_{nom} for 10 s (max. 75A) / 40 x I_{nom} for 1 sec (max. 300A) Output (0..100%) 0..1mA, 0..5mA, 0..10mA, 0..20mA, 0..1V, 0..10V Output (20..100%) 0.2..1mA, 1..5mA, 2..10mA, 4..20mA, 0.2..1V, 2..10V. With separate aux. voltage Output (-100%..0..+100%) -1..0..+1mA, -5..0..+5mA, -10..0..+10mA, -20..0..+20mA, -1..0..+1V, -10..0..+10V **Output loads** Current Output: max. 15V, voltage Output: max. 20mA Accuracy Class 0.5 (-10..<u>15..30</u>..55°C) according to IEC 688 Response time/ripple <300 ms / 1%pp according to IEC 688 Δout / ΔU_{aux} / Δf_{aux} / ΔR_{load} Max. 0.1%/ Δ 10% U_{aux} / 0.1%/45..65Hz / 0.1%/ Δ R_{load}-max. Temperature coefficient Typically 0.15% per 10°C. Max. 0.2% per 10°C Ambient temperature -10..+55°C (nominal). -25..+70°C (operating). -40..+70°C (storage) Auxiliary supply (U_{aux}) (45..65Hz) 57.7 - 63.5 - 100 - 110 - 120 - 127 - 220 - 230 - 240 - 380 - 415 - 440V AC ±20% (≤2VA) Test voltage 2000V - 50Hz - 1 min. **EMC** According to EN 50081-1/2, EN 50082-1/2, SS4361503 (PL4), IEC 255-4 (class 3). CE marked Class HSE, according to DIN 40040 Climate Case: IP52. Terminals: IP20. According to IEC 529 and EN 60529 Protection Terminals Screw Terminals. Multi-stranded: 2.5 mm² / single-stranded: 4.0 mm² 1 Case type See rear page

Order specifications

Туре		TAA-210DG/2	TAA-210DG/2
Connection	(See drawing)	WC1	WC3
Measuring range		х	x
Current transformer	(I _{pri} : I _{sec})	x	x
Measuring Voltage	(U _{nom})	x	x
Voltage transformer	(U _{pri} : U _{sec})	x	x
Auxiliary voltage	(U _{aux})	x	x
Output signal		x	х

TAV-210DG/3	TAV-220DG/3	TAC-210DG/3	TAC-220DG/3	TAC-230DG/2
X	x	x	x	x
		x	x	x
х	х			
х		х		
х	х	х	х	

Calculation of measuring range for watt/var transducers

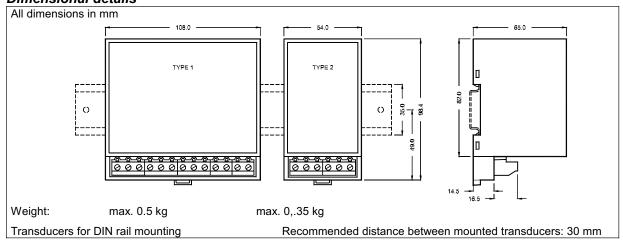
U = Nominal mains voltage. 3-phase network: Between 2 phases (e.g. 3 x 10kV). Single phase network: Between phase and neutral.

I = Primary rated current (rated value, e.g. 500/1).

	Lowest measuring range	Highest measuring range
3-Phase network	0.5 x √3 x U x I	2 x √3 x U x I
Single phase network	0.5 x U x I	2 x U x I

Standard measuring ranges: 1 - 1.2 - 1.5 - 2 - 2.5 - 3 - 4 - 5 - 6 - 7.5 - 8 and multiples of 10 and 100 thereof.

Example


=xap.e		
3-phase network, balanced load:	3 x 10kV	
Voltage transformer:	10k/100	
Current transformer:	500/1A	
Lowest Measuring range:	W = 0.5 x √3 x 10.000 x 500 = 4.3MW	Nearest higher standard range: 5.0MW
Highest Measuring range:	W = 2 x $\sqrt{3}$ x 10.000 x 500 =17.3MW	Nearest lower standard range: 15.0MW
Possible ranges:	5 - 6 - 7.5 - 8 - 10 - 12 - 15MW. Could be chosen according to calculated current consumption, power factor and a suitable deflection or output.	

Note: The Measuring range of a VAR transducer should be ≥50% of the selected measuring range of the corresponding WATT transducer, e.g. WATT transducer: -12...0...12MW, VAR transducer: -6...0...6Mvar or higher.

Order specifications for above example

Туре		TAP-210DG/3
Connection	(See drawing)	1W3
Measuring range		-150+15MW
Current transformer	(I _{pri} : I _{sec})	500/1A
Measuring Voltage	(U _{nom})	3 x 10kV
Voltage transformer	(U _{pri} : U _{sec})	10k/100
Auxiliary voltage	(U _{aux})	220V AC
Output signal		-100+10V

Dimensional details

Due to our continous development we reserve the right to supply equipment which may vary from the described.

DEIF A/S, Frisenborgvej 33 DK-7800 Skive, Denmark

Tel.: +45 9614 9614, Fax: +45 9614 9615 E-mail: deif@deif.com, URL: www.deif.com

